QA-QADMPPDS

Ladda ner som PDF

Practical Data Science with Python

An introduction to Statistics, R, Python, Analytics, Data Science and Machine Learning. Sets up practitioners with working knowledge of whole field of data science, along with immediate practical knowledge of key analytical tasks.

This 5-day course is hands-on, practical and workshop based. It is the start of an experienced developer’s journey towards becoming a Data Scientist. If you are a software engineer, in business intelligence, or you are an SQL specialist, this is the course for you.

By attending this course you will learn how to become a professional Data Scientist. You're going to be able to demystify and understand the language around data science and understand the core concepts of analytics and automation. You'll also develop practical, hands-on, advanced skills in Python, targeted towards data analysis and Machine Learning and R, so you can create sophisticated statistical models.

Target Audience

For fledging data science practitioners, and for IT professionals who wish to move to the exciting world of data analytics and machine learning.

Prior knowledge

  • GCSE level mathematics or above. Alternatively, familiar and comfortable with logical and mathematical thinking
  • Familiar with basic knowledge of programming: variables, scope, functions

Objectives:

At the end of the course attendees will know:

  • Fundamental concepts of Data Science
  • Methodologies used in Machine Learning
  • Summary statistics and how to use statistical inference to analyse data
  • Hands on R programming language for numerical analysis
  • Hands on Python programming language for numerical analysis
  • Most used simple machine learning algorithms

At the end of the course attendees will be able to:

  • Speak the language of data scientists
  • Write R or Python programs to analyse data
  • Understand a R or Python program in the context of data analytics
  • Explore and visualise data using R or Python
  • Build working machine learning models

Course Outline:

  • Introduction to Data Science
  • Methods in Machine Learning
  • Introduction to Mathematics
  • Statistics for Data Science
  • Introduction to Python
  • Programming in Python
  • Numerical Python
  • Data Manipulation with Pandas
  • Data Visualisation with Matplotlib and Seaborn
  • Data Exploration
  • Machine Learning Algorithms
  • Python Machine Learning
  • NoSQL Databases
  • Hadoop and Ecosystems

Objectives:

At the end of the course attendees will know:

  • Fundamental concepts of Data Science
  • Methodologies used in Machine Learning
  • Summary statistics and how to use statistical inference to analyse data
  • Hands on R programming language for numerical analysis
  • Hands on Python programming language for numerical analysis
  • Most used simple machine learning algorithms

At the end of the course attendees will be able to:

  • Speak the language of data scientists
  • Write R or Python programs to analyse data
  • Understand a R or Python program in the context of data analytics
  • Explore and visualise data using R or Python
  • Build working machine learning models

Course Outline:

  • Introduction to Data Science
  • Methods in Machine Learning
  • Introduction to Mathematics
  • Statistics for Data Science
  • Introduction to Python
  • Programming in Python
  • Numerical Python
  • Data Manipulation with Pandas
  • Data Visualisation with Matplotlib and Seaborn
  • Data Exploration
  • Machine Learning Algorithms
  • Python Machine Learning
  • NoSQL Databases
  • Hadoop and Ecosystems

Utbildningen levereras i samarbete med

Kursfakta

Kurs-ID: QA-QADMPPDS
Längd: 5 dagar
Pris exkl moms: 44 496 kr
Inregistrering: 09.00
Kursstart: 09.30
Kursslut (ca): 17.00

Frågor om kursen?

Har du frågor om kursens innehåll, leveransdatum/ort eller behöver en företagsanpassad variant? Fyll i formuläret nedan!


Avtalsrabatter och kampanjer kan ej nyttjas på denna kurs.


Ort och datum

Cloud Access
i Läs mer

Delta på kursen från ditt hem, jobb eller annan plats.

20 jan-24 jan
Boka nu!
17 feb-21 feb
Boka nu!
24 feb-28 feb
Boka nu!
2 mar-6 mar
Boka nu!
16 mar-20 mar
Boka nu!
20 apr-24 apr
Boka nu!
27 apr-1 maj
Boka nu!
18 maj-22 maj
Boka nu!
15 jun-19 jun
Boka nu!
6 jul-10 jul
Boka nu!
13 jul-17 jul
Boka nu!

Tipsa