ZL1_0A055

Ladda ner som PDF

Advanced Data Preparation Using IBM SPSS Modeler (V16)

Advanced Data Preparation Using IBM SPSS Modeler (V16) covers advanced topics to aid in the preparation of data for a successful data mining project. You will learn how to use functions, deal with missing values, use advanced field operations, handle sequence data, apply advanced sampling methods, and improve efficiency.

Audience

This advanced course is for IBM SPSS Modeler Analysts and IBM SPSS Modeler Data Experts who want to become familiar with the full range of techniques available in IBM SPSS Modeler for data manipulation.

Prior knowledge

You should have: 

  • General computer literacy.
  • Some experience using IBM SPSS Modeler including familiarity with the Modeler environment, creating streams, reading data files, and doing simple data exploration and manipulation using the Derive node.
  • Prior completion of Introduction to IBM SPSS Modeler and Data Mining (V16) is recommended.

Content

Using Functions

  • Use date functions
  • Use conversion functions
  • Use string functions
  • Use statistical functions
  • Use missing value functions

Data Transformations

  • Use the Filler node to replace values
  • Use the Binning node to recode continuous fields
  • Use the Transform node to change a field's distribution

Working with Sequence Data

  • Use cross-record functions
  • Use the Count mode in the Derive node
  • Use the Restructure node to expand a continuous field into a series of continuous fields
  • Use the Space-Time-Boxes node to work with geospatial and time data

Sampling Records

  • Use the Sample node to draw simple and complex samples
  • Draw complex samples
  • Partition the data into a training and a testing set
  • Reduce or boost the number of records

Improving Efficiency

  • Use database scalability by SQL pushback
  • Use the Data Audit node to process outliers and missing values
  • Use the Set Globals node
  • Use parameters
  • Use looping and conditional execution

Content

Using Functions

  • Use date functions
  • Use conversion functions
  • Use string functions
  • Use statistical functions
  • Use missing value functions

Data Transformations

  • Use the Filler node to replace values
  • Use the Binning node to recode continuous fields
  • Use the Transform node to change a field's distribution

Working with Sequence Data

  • Use cross-record functions
  • Use the Count mode in the Derive node
  • Use the Restructure node to expand a continuous field into a series of continuous fields
  • Use the Space-Time-Boxes node to work with geospatial and time data

Sampling Records

  • Use the Sample node to draw simple and complex samples
  • Draw complex samples
  • Partition the data into a training and a testing set
  • Reduce or boost the number of records

Improving Efficiency

  • Use database scalability by SQL pushback
  • Use the Data Audit node to process outliers and missing values
  • Use the Set Globals node
  • Use parameters
  • Use looping and conditional execution

Utbildningen levereras i samarbete med

Kurs-ID: ZL1_0A055
Längd: 1 dag
Pris exkl moms: 8 600 kr

Frågor om kursen?

Har du frågor om kursens innehåll, leveransdatum/ort eller behöver en företagsanpassad variant? Fyll i formuläret nedan!


Kan betalas med:
TRAINING CARD

Avtalsrabatter och kampanjer kan ej nyttjas på denna kurs.


Ort och datum

Stockholm
10 apr
Boka nu!
19 jun
Boka nu!
25 sep
Boka nu!

Tipsa